Novel Approaches to Tracking Fish Movements

Presenters:

Julie Claussen, Director of Operations David Philipp, Chair Board of Directors Fisheries Conservation Foundation, USA March 16, 2021

Published: Friday 26 February 2021

http://www.fishconserve.org/2021/02/23/new-report-worlds-forgotten-fishes/

Freshwater fisheries are the primary source of animal protein for **200+ million people** globally

Wild capture freshwater fish are around 13% of the world's annual catch

Wild capture freshwater fish are around 13% of the world's annual catch **BUT the data is very limited to truly assess this amount**

90% OF GLOBAL FRESHWATER FISH CATCH COMES FROM RIVER BASINS WITH ABOVE-AVERAGE STRESS LEVELS³¹

Figure 5. Threat scores for river basins that support (indicative) freshwater fisheries. Out of the 87 basins assessed, 15 are considered at 'high' threat, and 33 at 'moderate' threat due to pressures from pollution, water use (abstraction), climate variability, land use, loss of riverine connectivity and population density. Taken from FAO, 2020³⁰.

The World's Forgotten Fishes page 23

REASONS TO ASSESS FISH MOVEMENT

MOVEMENT PATTERNS OF KEY SPECIES

What habitats do the species use and when, and how do they move between them?

IMPACTS

How do human activities/development impact these movement patterns, and what does that mean for fish?

MITIGATION

What can be done to mitigate for those impacts, and how do we know if it is working?

METHODS TO ASSESS FISH MOVEMENT

The <u>research question</u> will dictate the best method.

Implementation will depend upon:

- Availability of study fish
- Costs
- Logistics
- Societal will

WHAT IS YOUR QUESTION: WHERE DO FISH GO?

WHAT IS YOUR QUESTION: DO FISH USE FISH PASSAGE?

METHODS TO ASSESS FISH MOVEMENT

MARK and RECAPTURE/DETECTION

- **1. EXTERNAL TAGS**
- 2. PIT TAGS
- **3. TELEMETRY**

MARK and RECAPTURE - EXTERNAL TAGS

Fish are captured and tagged

Fish are released

Fish are recaptured Tags are reported

MARK and RECAPTURE - EXTERNAL TAGS

MARK AND RECAPTURE FOR ESTIMATING POPULATION SIZE

Estimating a population size is highly complex (if not impossible) in an open system (river) that allows for undocumented harvest.

The trend is what is important. Are population numbers stable or going down?

TRENDS

Standardized sampling over time

MARK and RECAPTURE - EXTERNAL TAGS

ADVANTAGES

- Can mark small fish
- Can mark lots of fish
- Inexpensive
- Low technology

DISADVANTAGES

- Need very large numbers of fish tagged
- Need a good percentage of recaptures
- Only get point to point data
- Large effort for capture and recapture

Passive Integrated Transponder (PIT) Tags

PIT TAGS

Fish are captured and PIT-tagged

Data is recorded with tagged fish passes by a tag reader

PIT TAGS: Stream Movement

PIT TAG: Fish Passage

PIT TAGS

ADVANTAGES

- Small body sizes can be tagged
- Large numbers of fish can be tagged
- No need to physically recapture fish
- Tags last for the lifetime of the fish
- Depending on design cost can be low

Ot

DISADVANTAGES

- Seasonal limitations for having reader in the river
- Fish has to swim directly over the PIT Tag reader
- Need a large number of tagged fish
- Technology required
- Depending on design cost may be moderate-high

Fish Traps

Advantages:

- Catch fish directly for species ID
- Collect size and condition data
- Counting them manually

Disadvantages:

- Fish may avoid traps
- Manpower
- Needs regular maintainence
- Risks of injury or stress to the fish

Visual Counts

Fish are guided into an area where they are visible to be counted

ADVANTAGES

Counting without the need to handle or release fish

DISADVANTAGES

Time consuming Difficult for species identification Cannot assess maturity

Video Monitoring Systems

Fish ladder video monitoring systems : Cameras mounted in fish passage record fish passing by

Video Recording

Motion-detection software Imaging software > counts fish + determines species

CAMERA MONITORING

ADVANTAGES

- No need to handle or release fish
- Can review film for species ID, size, etc
- Software can provide details
- Can detect external tags

DISADVANTAGES

- Depending on design cost may high
- Difficult in turbid water
- Film viewing time consuming
- Technology required
- Regular cleaning and maintainence

METHODS TO ASSESS FISH MOVEMENT

MARK and RECAPTURE

- **1. EXTERNAL TAGS**
- 2. PIT TAGS
- **3. TELEMETRY**

TYPES of TELEMETRY

RADIO TELEMETRY

[FIXED ARRAY vs MANUAL]

ACOUSTIC TELEMETRY

USA

GIMI

EUVIP

HIRAAS

ESEX

SATELLITE TELEMETRY

METHODS TO ASSESS FISH MOVEMENT

Research question(s) will dictate the best method.

Radio telemetry is excellent for:

- Assessing daily, seasonal, annual movements
- Determining migration timing and routes
- Identifying spawning locations
- Defining habitat usage

RADIO - TELEMETRY

IMPLEMENTING RADIO - TELEMETRY

CONSTRUCTING RECEIVER STATIONS

CONSTRUCTING RECEIVER STATIONS

CAPTURING FISH

SURGERY

SURGERY

RECOVERY and RELEASE

BIG TAGS FOR BIG FISH

DATA RETRIEVAL

DATA ANALYSIS

DATA COMES IN BY RECEIVER

EXPORT TEXT FILE TO EXCEL SPREADSHEET

SORT BY FISH, ELIMINATE NOISE

IDENTIFY EVENT AND MAKE LOGS

REASSEMBLE DATA FOR EACH FISH INDIVIDUALLY

Date	Time	Site	Ant	Freq	Туре	Code	Power	_
2019-04-17	16:39:28	3	1	149.800	LOTEK	20	-79	
2019-04-17	16:39:38	3	1	149.800	LOTEK	20	-78	
2019-04-17	16:39:48	3	1	149.800	LOTEK	20	-82	
2019-04-17	16:39:58	3	1	149.800	LOTEK	20	-82	
2019-04-17	16:40:02	3	1	149.340	LOTEK	3	-94	
2019-04-17	16:40:08	3	1	149.800	LOTEK	20	-81	
2019-04-17	16:40:18	3	1	149.800	LOTEK	20	-77	
2019-04-17	16:40:28	3	1	149.800	LOTEK	20	-79	
2019-04-17	16:40:38	3	1	149.800	LOTEK	20	-78	
2019-04-17	16:40:48	3	1	149.800	LOTEK	20	-78	
2019-04-17	16:40:59	3	1	149.800	LOTEK	20	-78	
2019-04-17	16:41:09	3	1	149.800	LOTEK	20	-79	
2019-04-17	16:41:19	3	1	149.800	LOTEK	20	-78	
2019-04-17	16:41:29	3	1	149.800	LOTEK	20	-79	
2019-04-17	16:41:39	3	1	149.800	LOTEK	20	-81	
2019-04-17	16:41:49	3	1	149.800	LOTEK	20	-79	
2019-04-17	16:44:41	3	1	149.800	LOTEK	20	-67	
2019-04-17	16:44:51	3	1	149.800	LOTEK	20	-67	
2019-04-17	16:45:01	3	1	149.800	LOTEK	20	-67	
2019-04-17	16:45:03	3	1	149.340	LOTEK	3	-104	
2019-04-17	16:45:11	3	1	149.800	LOTEK	20	-78	
2019-04-17	16:45:21	3	1	149.800	LOTEK	20	-88	
2019-04-17	16:45:31	3	1	149.800	LOTEK	20	-90	
2019-04-17	16:45:41	3	1	149.800	LOTEK	20	-96	
2019-04-17	16:45:52	3	1	149.800	LOTEK	20	-95	
2019-04-17	16:46:02	3	1	149.800	LOTEK	20	-79	
2019-04-17	16:46:12	3	1	149.800	LOTEK	20	-96	
2019-04-17	16:46:22	3	1	149.800	LOTEK	20	-96	
2019-04-17	16:46:32	3	1	149.800	LOTEK	20	-98	
2019-04-17	16:47:12	3	1	149.800	LOTEK	20	-109	
2019-04-17	16:50:03	3	1	149.340	LOTEK	3	-110	
2019-04-17	16:55:04	3	1	149.340	LOTEK	3	-110	
2019-04-17	17:00:04	3	1	149.340	LOTEK	3	-110	
2019-04-17	17:05:05	3	1	149.340	LOTEK	3	-110	
2019-04-17	17:15:06	3	1	149.340	LOTEK	3	-109	
2019-04-17	17:19:42	3	1	149.800	LOTEK	20	-87	
2019-04-17	17:20:02	3	1	149.800	LOTEK	20	-109	
2019-04-17	17:20:07	3	1	149.340	LOTEK	3	-110	
2019-04-17	17:20:12	3	1	149.800	LOTEK	20	-102	
2019-04-17	17:25:07	3	1	149.340	LOTEK	3	-110	
2019-04-17	19:55:45	3	1	149.800	LOTEK	20	-108	
2019-04-17	19:56:26	3	1	149.800	LOTEK	20	-104	
2019-04-18	09:57:01	3	1	149.340	LOTEK	3	-109	
2019-04-18	10:02:01	3	1	149.340	LOTEK	3	-110	
2019-04-18	10:07:02	3	1	149.340	LOTEK	3	-109	
3010 04 10	10.12.02	2	1	140 240		2	110	

METHODS TO ASSESS FISH MOVEMENT

Research question(s) will dictate the best method.

Radio telemetry is excellent for:

- Assessing daily, seasonal, annual movements
- Determining migration timing and routes
- Identifying spawning locations
- Defining habitat usage

METHODS TO ASSESS FISH MOVEMENT

Research question(s) will dictate the best method.

Radio telemetry is excellent for:

- Assessing daily, seasonal, annual movements •
- Determining migration timing and routes •
- Identifying spawning locations •
- Defining habitat usage •

Impacts of Human Actions Success of Mitigation

HYDROPOWER IN BHUTAN

BHUTAN RESEARCH QUESTIONS

How far do Mahseer migrate each year? Where do Mahseer spawn? Where do Mahseer overwinter?

MAHSEER LOCATIONS – MANAS WATERSHED

POONCH RIVER IN PAKISTAN

HOW DOES THE DAM IMPACT MOVEMENT?

12 Receiver Stations: Lower River = 4 Upper River = 8

MAE NGAO IN THAILAND

HOW DO FISH MOVE AMONG RESERVES?

RADIO - TELEMETRY

ADVANTAGES

- Do not need a large number of fish tagged
- Daily, seasonal, and annual movements
- Long-range movements
- Long-term movement history
- Habitat use information
- Collects data continuously
- Needs only periodic data downloads
- Produces a TON of data.

DISADVANTAGES

- Costs can be high
- Labor Intensive during some periods
- Specific training needed

CONSIDERATIONS FOR A NEPAL RECEIVER STATION ARRAY

UT3A Dam Mailung Kola

